
Preprint
UCRL-JC-137202

Using Evolutionary
Algorithms to Induce
Oblique Decision Trees

E. Cantu-Paz and C. Kamath

This article was submitted to
Genetic and Evolutionary Computation Conference, Las Vegas, NV,
July 8-12, 2000

U.S. De~artment of Energy

Lawrence
Livermore
National
Laboratory

/
/

January 21,2000

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http://apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http://www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http://www.llnl.gov/tid/Library.html

Using Evolutionary Algorithms to Induce Oblique Decision Trees

Erick Cantfi-Paz and Chandrika Kamath
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA 94550
cantupaz@llnl.gov

Abstract

This paper illustrates the application of evo-

lutionary algorithms (EAs) to the problem

of oblique decision tree induction. The ob-

jectives are to demonstrate that EAs can find

classifiers whose accuracy is competitive with

other oblique tree construction methods, and

that this can be accomplished in a shorter

time. Experiments were performed with a

(1+1) evolutionary strategy and a simple ge-

netic algorithm on public domain and artifi-

cial data sets. The empirical results suggest

that the EAs quickly find Competitive classi-

tiers, and that EAs scale up better than tra-

ditional methods to the dimensionality of the

domain and the number of training instances.

1 INTRODUCTION

Decision trees (DTs) are popular classification algo-

rithms, and there are numerous algorithms to induce a

tree classifier from a given set of data (Murthy,). Most

of the tree inducing algorithms create tests at each

node that involve a single attribute of the data. These

tests are equivalent to hyperplanes that are parallel to

one of the axis in the attribute space, and therefore

the resulting trees are called axis-parallel. These sim-

ple univariate tests are convenient because a domain

expert may interpret them easily, but they may result

in complicated and inaccurate trees if the data can be

partitioned by hyperplanes that are not axis-parallel.

Oblique decision trees use multivariate tests that are

not necessarily parallel to an axis, and in some do-

mains may result in much smaller and accurate trees.

However, these trees are not as popular as the axis-

parallel trees because the tests are harder to interpret,

and the problem of finding oblique hyperplanes is more

difficult than finding axis-parallel partitions.

The purpose of this paper is to illustrate the appli-

cation of EAs to the task of oblique decision tree in-

duction. The objectives are to show that, in some do-

mains, evolutionary optimization may result in classi-

tiers whose accuracy is competitive with other oblique

tree construction methods, and that this can be ac-

complished in shorter time. The results of our experi-

mental study suggest that the EA-augmented inducers

can quickly find competitive classifiers, and that they

scale up better than traditional oblique DT inducers

to the size and dimensionality of the training sets.

The paper is organized as follows. The next section

provides a brief background on oblique decision trees

and a brief review of relevant previous work. Section 3

describes some of the advantages of using EAs to find

splits in oblique DTs, and describes our approach to

this problem. Section 4 has experimental results that

illustrate the advantages of the evolutionary approach

using public domain and artificial data sets. Finally,

section 5 has a brief summary and the conclusions of

the paper.

2 OBLIQUE DECISION TREES

disadvantages, and each defines a different optimiza-

tion problem.
t

Breiman, Friedman, Olshen, and Stone (1984) in-

troduced the first algorithm to induce oblique DTs:

CART with linear combinations. At each node of the

tree, the algorithm iteratively finds locally optimal val-

ues for each of the ai coefficients. Hyperplanes are gen-

erated and tested until the marginal benefits become

smaller than a constant.

The task of any DT inducer is to use the information

contained in a training set of labeled instances to cre-

ate a model that predicts the class of unseen instances.

In this paper, we consider that the instances take the

form (xl, x2,..., Xd, cj), where the xi are real-valued at-

tributes, and the cj is a discrete value that represents

the class label of the instance. As was mentioned in

the introduction, most tree inducers consider tests of

the form xi > k that are equivalent to axis-parallel

hyperplanes in the attribute space. The task of the

inducer is to find appropriate values for i and /~. In

this paper we consider more general tests of the form

d

E aix~ + ad+l > 0, (1)
i=1

where the ai are real-valued coefficients. In this case,

the task of the inducer is much harder than before, be-

cause it involves searching in a d+l-dimensional space.

It has been shown that finding the best oblique tree

is NP-complete (Heath, Kasif, & Salzberg, 1993), and

therefore existing oblique DT inducers use some sort

of greedy search to find values for the coefficients. To

evaluate the candidate hyperplanes, these search al-

gorithms use a heuristic measure of the impurity of

the test. Many impurity measures have been pro-

posed (Murthy,); each has its own advantages and

Murthy, Kasif, and Salzberg (1994) introduced 0C1,

which uses an ad-hoc combination of hillclimbing and

randomization. As in CART, the hillclimber finds lo-

cally optimal values for one coefficient at a time, al-

though OC1 offers several variants to choose the order

in which the coeff~cients are optimized. The random-

ization component takes two forms: OC1 uses multi-

ple random restarts, and when hillclimbing reaches a

local minimum the hyperplane is perturbed in a ran-

dom direction. Murthy et al. present OC1 as an ex-

tension of CART with linear combinations that over-

comes some of its limitations. In particular, they claim

that CART’s deterministic nature may cause it to get

trapped in local minima, and that using randomiza-

tion may improve the quality of the DTs. In addition,

OC1 produces multiple trees using the same data, and

unlike CART the time used at each node in the tree is

bounded. They present experimental results that sug-

gest that OC1 outperforms CART in several domains.

Heath, Kasif, and Salzberg (1993) used simulated an-

nealing to perturb the hyperplane’s coefficients. Simu-

lated annealing is a more sophisticated optimizer than

those used in CART and OC1, and in some domains it

can produce small and highly accurate trees. However,

simulated annealing converges very slowly, and the DT

inducer has to examine a large number of hyperplanes,

making it inadequate for large data sets. No

Other related work in this area includes the Linear Ma-

chine Decision Trees (LMDT) system (Utgoff & Brod-

ley, 1991; Brodley & Utgoff, 1995). The LMDT algo-

rithm is very different from the other systems. Instead

of using a test similar to equation 1, at each node

the LMDT has a set of R linear discriminant func-

tions gi(X) -- wTx and assigns class i e {1, ...,

to the instance described by X = (xl, ..., Xd) if Vi, i ¢

j gi(X) gj (X). Thetrai ning algorithm changes the

weight vectors Wi according to a specific correction

rule, and the tree is built recursively until all the in-

stances in a node belong to the same class. There is

no need to use a heuristic to measure the impurity of

each split or to decide when to stop. EAs could also be

used in combination with LMDT to adapt the weight
Use

vectors, but we do not address LMDT in this paper.

3 EVOLUTIONARY OBLIQUE DTs

At the heart of DT inducing algorithms there is an

optimization task: to minimize the impurity of the

split defined by a hyperplane. This task is performed

at each node of the tree, then the data is partitioned

into subsets, and the algorithm is applied recursively

to each subset. Quinlan (1986) described this proce-

dure as ’top-down’ induction of decision trees. Our

proposal is to use EAs as the optimization algorithm.

Evolutionary algorithms are a promising alternative to

existing oblique tree algorithms for several reasons:

More sophisticated optimizers. EAs are not lim-

ited to consider one coefficient at a time (like

CART and OC1), and it is likely that EAs find

better splits than the simple greedy hillclimbers

that are popular.

need for optimal splits. Finding the best split

at each node does not guarantee that the best

tree will be found. Therefore, there is no need

to run the EAs (or any other optimizer, for that

matter) until they find the best solution that they

can. It is well known that EAs quickly improve on

the initial solutions, and so we may use the best

hyperplanes found after just a few iterations.

Scalability to high dimensional spaces. The di-

mension of the search space is defined by the num-

ber of attributes that describe each instance. In

practice this can be a large number, and the exe-

cution time of some existing DT algorithms may

not scale up well. In contrast, EAs have been

shown to have good scalability properties (?).

of domain knowledge. There are numerous

opportunities to incorporate knowledge about the

DT inducing problem into the EAs. For instance,

real-valued encodings and operators seem natu-

ral to represent hyperplanes. The positive ex-

periences with existing DT inducers suggest that

recombination or mutation operators that create

new hyperplanes that are only slight variations

of the originals may work well. This can be ac-

complished by restricting mating between similar

hyperplanes or by using small mutation steps, for

example. In addition, the execution time may be

reduced using known ’good’ solutions to seed the

initial population. In particular, we seed the pop-

ulations with hyperplanes obtained by an axis-

parallel algorithm.

Hybridization. Most DT algorithms use a local opti-

mizer that is well tuned to the tree induction task,

and interfacing it to the EA could boost perfor-

mance significantly.

Tolerance to noise. More efficient EA-based DT in-

ducers may be obtained by approximating the fit-

ness of a hyperplane by using a small random sam-

ple of instances to evaluate the split. This approx-

imation would assign different fitness values to the

same hyperplane every time that it is evaluated,

but EAs are tolerant such noisy fitness evalua-

tions (Grefenstette & Fitzpatrick, 1985; Miller

Goldberg, 1996a).

Parallel implementations. It is straightforward to

implement EAs on parallel computers (see

e.g., (Cantfi-Paz, 1998)), and the expected per-

formance improvements are very promising.

This paper does not consider hybrids or parallel imple-

mentations, but we use knowledge about the problem

in our choice of encoding and operators and to seed

the initial population. The EAs were run for a fixed

number of iterations that, in many cases, were not

enough for the EA to converge to a unique solution or

to find the best hyperplane that it could, but that were

sufficient to reach acceptable solutions. In addition,

we performed experiments to explore the scalability of

EAs and their sensitivity to sampling.

4 EXPERIMENTS

To demonstrate the feasibility of using EAs to search

for oblique partitions, we conducted three sets of ex-

periments. In the first set, we used the same four

public-domain data sets used by Murthy et al. (1994)

to evaluate OC1. Next, we used artificial data with

known properties, and we perform experiments to

study the scalability of the different algorithms to the

dimensionality of the domain. Finally, we present ex-

periments with a larger database to illustrate how sam-

pling may help to scale up the evolutionary approach

to more realistic situations.

The experiments compare the performance of two

baseline DT inducers against two inducers that use

EAs. The first baseline DT system is OC1 with its

default parameters, and the second is OC1 limited to

axis-parallel partitions, which we call OC1-AP.

The first DT system with an EA is an extension of

OC1 that uses a (1+1) evolutionary strategy with self-

adaptive mutations. We call this OC1-ES. The can-

didate hyperplane is represented as a vector of real-

valued coefficients, al, ..., ad+l, and for each coefficient

there is a corresponding mutation step Ol,...,O-d+l,

which are initially set to 1. At each iteration, the

mutation steps are updated and a new hyperplane is

obtained according to the following rule:

= N(0, 1)

o~i = cri exp(q-’v + TN(O, 1)) (2)

a~ = a~ + ~N(0, 1),

where N(0, 1) indicates a realization of a unit normal

variate, T = (~-~)-~, and T’ = (Yr~) -1. The first

hyperplane is the best axis-parallel split found by 0C1.

The second extension of 0C1 with an EA uses a simple

generational GA with real-valued genes, and is called

0CI-GA. The GA used pairwise tournament selection,

uniform crossover with probability 1.0, and no muta-

tion. The population size was set to 20x/d, along the

lines of a population-sizing theory that proposes that

the population size required to reach a solution of a

particular quality is O(x/d) (Harik & Lobo, 1999).

best axis-parallel hyperplane was copied to 10% of the

initial population, and the remainder of the population

was initialized randomly.

The execution times were measured on a 500 Mttz Pen-

Nanle

Cancer
Diabetes
Housing

Iris

Task Description Attributes No. of Instances
Diagnose a tumor as benign or malignant 9 683
Detect presence of diabetes 8 768
Predict housing values in suburbs of Boston 12 506
Classify type of iris 4 150

Table 1: Descriptions of the small public domain data sets used in the experiments.

Algorithm Parameter Cancer Diabetes Housing Iris
Accuracy 96.2 (1.0) 74.1 (2.0) 82.8 (2.0) 95.5 (1.8)

OC1 Leaves 3.3 (1.1) 5.7 (2.1) 7.3 (2.6) 3.5 (0.2)
Time 28.4 (8.7) 33.0 (1.4) 19.8 (1.3) 1.2 (0.1)

Accuracy 94.7 (0.7) 74.0 (1.0) 82.2 (1.0) 92.8 (2.6)
OC1-AP Leaves 9.4 (2.6) 18.9 (8.7) 10.0 (6.6) 5.2 (1.4)

Time 0.2 (0.0) 0.4 (0.0) 0.3 (0.0) 0.1 (0.0)
Accuracy 95.2 (0.9) 73.7 (1.4) 82.8 (1.2) 96.3 (1.5)

OC1-ES Leaves 5.2 (2.2) 17.1 (5.0) 11.5 (5.7) 3.5 (0.4)
Time 5.1 (0.4) 14.0 (0.3) 8.6 (0.3) 0.9 (.1)

Accuracy 94.3 (0.5) 73.9 (1.3) 82.4 (1.1) 93.6 (1.3)
OC1-GA Leaves 9.6 (2.1) 19.0 (11.6) 12.5 (5.2) 4.3 (1.4)

Time 7.7 (0.4) 13.0 (0.3) 8.5 (0.4) 0.37 (0.04)

Table 2: Comparison of different algorithms on the small public domain data sets.

tium III PC with 128 Mb of RAM running NT 4.0.

The programs were compiled with the ecgs compiler

version 2.91 using -O optimizations.

All experiments measure the impurity of a split us-

ing the twoing rule (Breiman et al., 1984) that is the

default in OC1. The impurity was used without mod-

ifications as the fitness of the hyperplanes.

4.1 SMALL DATA SETS

The first round of experiments use small public do-

main data sets, which are available at UCI’s machine

learning repository (Blake & Merz, 1998). These are

briefly described in table 1, and have been used in nu-

merous studies of machine learning and data mining

algorithms. For our comparison we follow the exper-

imental procedure that Murthy et al. (1994) used

compare OC1 to other DT inducers: we use the stan-

dard parameters of OC1, and the results presented (in

table 2) are the average of ten five-fold cross-validation

experiments (50 trees total). We report the percent-

age of instances classified correctly, the size of the tree

measured by the number of leaves, and the execution

time of the program measured in seconds, along with

their standard deviations (in parenthesis).

From the table it is clear that the differences in the ac-

curacy of the different algorithms is very small. There

are significant differences (at least at the 0.05 confi-

dence level) on the cancer and iris data, but the mag-

nitude of the differences is still small. For the four

data sets, the average size of the trees found by the

GA-augmented inducer was close to the axis-parallel

algorithm, but in three cases (cancer, housing, and

iris) OC1-ES found trees comparable to OC1. The

largest differences are in execution times; the EAs be-

ing on average approximately 3 times faster than OC1,

but much slower than OC1-AP.

4.2 ARTIFICIAL DATA

The next set of experiments used three artificial data

sets. The purpose of these experiments is to ensure

that the concept to be learned matches the bias of the

algorithms (the classes are separable by oblique hy-

perplanes). In addition, we performed experiments to

explore the scalability of the algorithms as the number

of attributes varies. The three data sets were also used

by Murthy et al. (1994) in their evaluation of OC1,

but we used them to study different properties of the

algorithms.

The first artificial data set has 2000 instances di-

vided into two classes. Each instance has d attributes

whose values are uniformly distributed in [0,1]. The

data is separable by the hyperplane xl + ... + Xd/2 <~

xg/a+l + ... + xd, where d ¯ {10, 20, 50}. These data

sets are labeled LS10, LS20, and LS50 according to

their dimensionality.

We followed the same experimental procedure as in

the previous experiments, and the results are summa-

rized in table 31. In this case, OCI-AP consistently

found the least accurate and largest trees. Of course,

it was the fastest algorithm, but its accuracy is too low

to consider AP trees competitive (consider that ran-

dom guessing would result in a 50% accuracy and the

accuracy of OCI-AP on LS50 is 58%). OC1 produces

the most accurate trees for LS10, but as the number of

dimensions increases its performance seems to drop be-

low the EA-augmented inducers. OCI-GA maintains

the highest accuracy, but its time seems to increase

1Our results with the LS10 data axe different from
Murthy et al.’s because we used OCl’s default pruning
option (using 10% of the data), but they did not prune the
resulting trees.

faster than OC1-ES. In any case, the EA inducers are

faster than 0C1 (approximately between 2x and 6x).

The size of the trees found by 0C1 and OC1-ES in-

creases with the number of dimensions, but those of

OC1-GA seem to remain of a constant size. However,

consider that the ideal tree for this domain has two

leaves, and all the algorithms find much larger trees.

The second and third artificial data sets, POL2 and

RCB2, represent concepts that are supposed to be

more difficult to learn. They are defined in 2-D

(Xl, x2 ̄ [0, 1]), and depicted in figure 1. The concept

represented by the POL2 data is a set of four paral-

lel oblique lines (hence its name), it contains 2000 in-

stances divided into two classes. The "rotated checker

board" (RCB2) data also has 2000 instances, but

this case they are divided into eight classes. We used

the same experimental setup as before, and the results

are in table 3.

In these two domains, OC1 and OC1-ES produced the

most accurate and smallest trees. The smallest trees

for POL2 and RCB2 have five and eight leaves, re-

spectively, and OC1 consistently found trees of those

sizes. As expected, the AP trees are the largest and

least accurate, but OC1-GA found only slightly more

accurate and smaller trees. Both of the EA inducers

were approximately eight times faster than OC1, but

in these two problems the overall performance of the

ES was much better than the GA.

4.3 OPTICAL DIGIT RECOGNITION
DATA

To study the problem of scalability to larger data sets,

we experimented with a the optical digit recognition

data set, which is also available at UCI’s ML reposi-

tory. This data set has 3823 instances in a training set

and 1797 in a testing set; each instance is described by

Algorithm Parameter LS10 LS20 LS50 POL2 RCB2
Accuracy 97.1 (0.4) 88.5 (1.1) 72.5 (1.3) 99.6 (0.1) 99.0 (0.1)

OC1 Leaves 5.3 (2.2) 5.9 (2.7) 10.0 (3.6) 5.0 (0.0) 8.4 (0.3)
Time 170.9 (12) 391.5 (16.6) 608.7 (32.8) 36.0 (2.3) 44.8 (1.5)

Accuracy 73.0 (1.5) 64.6 (0.8) 58.6 (12) 94.2 (0.6) 92.8 (0.4)
OC1-AP Leaves 86.7 (16.5) 71.5 (29.0) 58.0 (20.8) 77.7 (10.4) 85.9 (6.8)

Time 1.6 (0.0) 3.5 (0.1) 11.7 (0.6) 0.3 (0.0) 0.4 (0.0)
Accuracy 93.7 (0.8) 87.0 (1.0) 78.5 (1.6) 99.4 (0.3) 98.1 (0.3)

OC1-ES Leaves 9.9 (2.8) 14.4 (5.6) 16.3 (9.4) 6.3 (1.2) 10.9 (1.9)
Time 29.8 (2.4) 65.1 (3.3) 163.9 (14.9) 4.5 (0.4) 6.0 (0.4)

Accuracy 95.4 (0.6) 92.0 (0.7) 85.2 (1.0) 95.3 (0.4) 93.8 (0.7)
OC1-GA Leaves 8.8 (3.8) 9.8 (5.9) 9.5 (5.6) 57.5 (10.5) 64.6 (9.7)

Time 36.3 (3.8) 101.5 (4.8) 333.3 (22.2) 4.7 (0.3) 5.0 (0.2)

Table 3: Comparison of different algorithms on the artificial data sets.

64 numeric attributes. The objective is to identify the

instances as one of 10 digits.

With this domain, we illustrate a more realistic ap-

plication of EAs to the problem of oblique DT induc-

tion. The larger size of the training set could cause

fitness evaluations to be prohibitively expensive, and

therefore we seek to obtain faster approximate evalu-

ations by sampling the training set. We consider two

ways of sampling. The first is a preprocessing step in

which the training set is sampled once at the begin-

ning of an experiment. This static sampling ignores

all the instances that were not selected originally, pos-

sibly wasting valuable information. However, static

sampling is valuable because it simulates a situation

when not much data is available for training (which

is usually the case in the domains that interest us).

The second way of sampling is to choose a fraction of

the instances available at each tree node every time a

hyperplane is evaluated. THis method is slightly more

expensive, but it is advantageous especially when sam-

ples are small, because repetitive sampling eventually

considers all the available labeled instances. Evaluat-

ing the hyperplanes with dynamic samples also means

that every time that a hyperplane is evaluated its fit-

hess is different. P~peated evaluations of the same

hyperplane would enable us to better estimate its fit-

ness (e.g., by taking the average of multiple evalua-

tions), and some recent theory could be used to deter-

mine the optimal number of repetitive evaluations that

would minimize the execution time of the GA (Miller

& Goldberg, 1996b). As a first cut, however, we de-

cided to use a single evaluation as a crude (but fast)

estimate of fitness.

The results with repetitive sampling are reported in

table 4. In this case, we report the average of 10 ex-

periments, and training and testing used the partition

of the instances as in the UCI repository. The algo-

rithms use the same parameters as before. Sampling

decreases the execution time as desired, but it also af-

fects the accuracy. For each sample size, the GA finds

the smallest and most accurate classifiers, and ia most

cases it is faster than the original oblique OC1. The

ES is the fastest of the oblique classifiers, and its ac-

curacy is better than OC1, but not as good as the

GA. Note, however, that the axes-parallel OC1 is the

fastest algorithm, and that its accuracy is similar to

OC1-ES. In fact, using OC1-AP with the entire data

set is faster and more accurate than the GA on 5%

Figure 1: The POL2 and RCB2 data sets.

samples, so if the end user does not care about the

relatively small differences in accuracy, in this domain

axes-parallel DTs would be a good choice. If accuracy

or tree size is a premium, then OC1-GA would be the

best option.

In separate experiments we encountered that repeti-

tive sampling gives more accurate results than static

sampling at the beginning of the experiments. For

samples of 25% or more of the training set, the accu-

racy was only slightly lower than with repetitive sam-

pling (~ 4-5%), but for smaller samples, the accuracy

was between 6 to 22% lower. The general trends were

the same as with repetitive sampling, so we omit those

results.

5 SUMMARY AND CONCLUSIONS

Traditional DT inducers use some form of heuristic

greedy search to find appropriate splits. In this paper,

we substitute that greedy search with two evolutionary

algorithms: a (1+1) evolutionary strategy and a sim-

ple GA. We performed experiments on public domain

and artificial data sets with different characteristics to

evaluate the performance of the EA-based tree induc-

ers. The results suggest that EAs are capable of find-

ing oblique trees with similar accuracy to OC1, and

that this can be done at a fraction of the cost. The

experiments also suggest that the EAs scale up better

than traditional methods to the dimensionality of the

data.

We evaluated the use of sampling to further reduce

the execution time of the inducers. Sampling resulted

in faster training times, but also in a loss of accuracy,

which was more pronounced when the training set was

sampled statically.

This paper is only a first step in the application of

Algorithm Parameter 5% 10% 25% 50% 100%
Accuracy 42.1 (7.9) 53.7 (8.1) 74.3 (2.2) 82.3 (1.1) 86.4 (0.9)

OC1 Leaves 56.7 (11.4) 88.5 (26.0) 138.7 (69.2) 147.6 (47.1) 53.7 (30.6)
Time 7.8 (0.3) 16.6 (0.7) 49.4 (2.6) 117.1 (7.0) 298.6 (11.1)

Accuracy 68.3 (2.4) 76.0 (2.3) 79.4 (1.3) 82.2 (2.2) 84.5 (1.9)
OC1-AP Leaves 22.8 (4.3) 44.7 (16.0) 68.6 (27.6) 107.6 (20.3) 125.8 (48.2)

Time 0.6 (0.0) 0.8 (0.0) 1.4 (0.0) 2.5 (0.0) 5.5 (0.2)
Accuracy 69.8 (2.0) 76.6 (2.4) 82.8 (1.3) 84.6 (1.4) 87.9 (1.0)

OC1-ES Leaves 17.9 (2.9) 28.5 (6.8) 48.4 (16.7) 68.6 (25.9) 84.0 (37.6)
Time 5.5 (0.5) 9.2 (0.5) 17.5 (0.8) 33.0 (1.0) 63.0 (3.2)

Accuracy 79.5 (2.6) 83.7 (2.1) 87.4 (1.1) 88.9 (0.7) 90.2 (1.1)
OC1-GA Leaves 12.7 (1.6) 16.8 (4.0) 24.1 (8.0) 45.3 (27.2) 52.3 (34.6)

Time 8.3 (0.4) 15.2 (0.6) 36.1 (1.4) 75.6 (2.9) 144.2 (4.5)

Table 4: Comparison of different algorithms on the digit recognition data using sampling (5%-100% of the
training set) every time a hyperplane was evaluated.

EAs to oblique DT induction, and there are multiple

opportunities to expand our work. In particular, we

should continue the study of scalability using larger

data sets (both artificial and ’real-world’), and incor-

porate other algorithms such as (#, A) ES. Also, the

domain knowledge should be exploited by designing

specialized operators and by combining EAs with lo-

cal hillclimbers.

Acknowledgments

This work was performed under the auspices of the U.S.
Depaxtment of Energy by Lawrence Livermore National
Laboratory under contract no. W-7405-Eng-48.

References

Blake, C., ~ Merz, C. (1998).
UCI repository of machine learning databases.
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Breiman, L., Friedman, J., Olshen, R., & Stone, C.
(1984). Classification and regression trees. Pa-
cific Grove, CA: Wadsworth & Brooks Advanced
Books and Software.

Brodley, C. E., & Utgoff, P. E. (1995). Multivariate
decision trees. Machine Learning, 19, 45-77.

Cantfi-Paz, E. (1998). A survey of parallel genetic
algorithms. Calculateurs Parall~les, Reseaum et
Systems Repartis, 10(2), 141-171.

Grefenstette, J. J., ~ Fitzpatrick, J. M. (1985). Ge-

netic search with approximate function evalua-
tions. In Grefenstette, J. J. (Ed.), Proceedings
of an International Conference on Genetic Al-
gorithms and Their Applications (pp. 112-120).
Hillsdale, N J: Lawrence Erlbaum Associates.

Harik, G., & Lobo, F. (1999). A parameter-lss
genetic algorithm (IlliGAL Report No. 99009).
Urbana, IL: University of Illinois at Urbana-
Champaign, Illinois Genetic Algorithms Labo-
ratory.

Heath, D., Kasif, S., & Salzberg, S. (1993). Indue-
tion of oblique decision trees. In Proceedings of
the 13th International Joint Conference on Ar-
tificial Intelligence (pp. 1002-1007). San Mateo,
CA: Morgan Kaufmann.

Miller, B. L., & Goldberg, D. E. (19964). Genetic
algorithms, selection schemes, and the varying
effects of noise. Evolutionary Computation, 4 (2),
113-131.

Miller, B. L., & Goldberg, D. E. (1996b). Optimal
sampling for genetic algorithms. In Dagli, C. H.,
Akay, M., Chen, C. L. P., Fern£ndez, B. R., ~¢
Ghosh, J. (Eds.), Proceedings of the Artificial
Neural Networks in Engineering (ANNIE ’96)
conference, Volume 6 (pp. 291-297). New York:
ASME Press.

Murthy, S. K. Automatic construction of decision
trees from data: A multi-disciplinary survey.

Murthy, S. K., Kasif, S., & Salzberg, S. (1994).
system for induction of oblique decision trees.
Journal of Artificial Intelligence Research, 2(1),
1-32.

Quinlan, J. R. (1986). Induction of decision trees.
Machine Learning, 1, 81-106.

Utgoff, P. E., & Brodley, C. E. (1991, January).
Linear machine decision trees (Technical Report
COINS 91-10). Amherst, MA: Department of
Computer Science, University of Massachusetts.

